
Differences and Use Cases

Running Projects in
Application Containers,
System Containers & VMs

● Virtualization and Container Types

● Effective Usage of Infrastructure

● Scaling VMs vs Containers

● Pay-as-you-Go vs Pay-per-Actual-Use

● Kubernetes Challenges & Solutions

Agenda

Speakers

Ihor Kolodyuk
Senior Cross-Platform Architect

Tetiana Fydorenchyk
Director of Product Marketing

Simon Ekstrand
CTO

VIRTUALIZATION

Virtualization Types

Virtualization Types

Virtualization Types

Container Types

● Used as an OS to run multiple services
● No layered filesystems by default
● Stronger isolation
● Examples: Virtuozzo, LXC

● Used to run for a single service
● Layered filesystems
● Examples: Docker, CRI-O

Certified Managed Containers

Virtual Private Servers (Elastic VPS)

Custom Docker Containers

Docker Engine CE (Docker Native)

Kubernetes Cluster

EFFECTIVE USAGE
OF INFRASTRUCTURE

Running Kubernetes on VMs vs System Containers

Kubernetes on VMs vs System Containers

Kubernetes on VMs vs System Containers

Live Migration of Containers

● Zero downtime hardware maintenance

● Load rebalancing across host nodes

● High-availability across clouds

Live Migration across Clouds without Downtime

https://www.youtube.com/watch?v=HfN4L6RFL10
https://jelastic.com/blog/live-migration-of-docker-containers-within-cloud-regions/

SCALING JAVA IN
VMs vs CONTAINERS

Resource Limit vs Real Usage in VM and Container

Horizontal Scaling: VMs vs Containers

VMs

Containers

Vertical Scaling: VMs vs Containers

Resizing of the same container on the fly is easier, cheaper and faster
than moving to a larger VM.

Every container hosted with
Jelastic PaaS is divided into
granular units – cloudlets (128MiB
of RAM and 400MHz of CPU)

Automatic Vertical Scaling

You can set up a maximum
Scaling Limit for each container,
so the resources will be always
available in case of load spikes
or other consumption changes

Automatic Vertical Scaling

Horizontal Scaling

MasterMaster Worker Worker

Stateless Stateful

Stateless mode creates an empty node from
a base container image template.

Works faster than stateful and easy to
parallelize the scaling process.

Stateful mode creates a new node as a full
copy (clone) from the master.

Usually takes longer than stateless, but data is
replicated automatically.

Empty Clone

Stateless (Create New) vs Stateful (Clone)

Automatic Horizontal Scaling

Load Alerts

All newly added containers of

the single layer are created

at the different hosts,

providing advanced

high-availability and failover

protection.

Anti-Affinity Rules

PAY-PER-USE
 vs
PAY-AS-YOU-GO

Pay-As-You-Go vs Pay-per-Actual-Use

Using automatic vertical scaling, cloud provides can offer economically
advantageous pricing based on the actual resource consumption

Forbes - Deceptive Cloud Efficiency: Do You Really Pay As You Use?

 Pay-As-You-Go Pay-per-Actual-Use

https://www.forbes.com/sites/forbestechcouncil/2018/03/28/deceptive-cloud-efficiency-do-you-really-pay-as-you-use/

~$ free -m

● total - memory limit, amount of memory that can be used

● used - currently used memory, calculated as total - free - buffers - cache

● shared - extra used memory and shared with other containers on the same host

● buff/cache - temporary used memory which can be reclaimed any time on demand

Linux Terminology for RAM Consumption

https://linuxize.com/post/free-command-in-linux/

● Physical Memory - the amount of RAM installed
● Memory Used - the amount of RAM being used

○ App Memory - the amount of memory being used by apps
○ Wired Memory - memory required by the system to operate. This memory can’t

be cached and must stay in RAM, so it’s not available to other apps
○ Compressed - the amount of memory that has been compressed to make more

RAM available

To check RAM usage on Mac, go to Activity Monitor (Applications > Utilities)

MacOS Terminology for RAM Consumption

● Total - memory limit, amount of memory
that can be used

● In Use - currently used memory,
calculated as total - free - standby -
modified

● Modified - memory whose contents must
be written to disk before it can be used
for another purpose

● Standby - memory that contains cached data and code that is not actually in use

● Free - memory does not contain any valuable data and that will be used first and
processors drivers or the operating system needs more memory

Windows Terminology for RAM Consumption

Pay-as-You-Go

Pay-as-You-Allocate

Pay-as-You-Reserve

= Pay-for-LimitsPay-per-Use !=

Speculation with Pay-per-Use Term

https://aws.amazon.com/fargate/pricing/

AWS’s Pay-per-Use = Pay-per-Allocated-Limits

https://aws.amazon.com/fargate/pricing/

Google’s Pay-per-Use = Pay-per-Allocated-Limits

https://cloud.google.com/run/pricing#cloudrun-pricing

https://cloud.google.com/run/pricing#cloudrun-pricing

Real Statistics of Resource Consumption with Containers

KUBERNETES
HOSTING

Technical Struggles with Kubernetes Services

● Too many components to manage (pod, node, service, ingress
and ingress controller, namespace, deployment, statefulset,
RBAC, nodeport, load balancer, physical volume, physical volume
claim, networks, resource limits, and so on)

● High entry barrier for beginners, most of features are
API-managed only, default Kubernetes Dashboard UI provides
limited functionality

● Migration complexity of traditional and legacy applications

● K8s was designed for large scale cloud-native apps and
microservices, so it’s not suitable for all workloads

● Upgrade to next Kubernetes version requires proper automation
and may be a challenge

https://www.youtube.com/watch?v=l9H28icAlUg

Automated Kubernetes Cluster Installation

https://www.youtube.com/watch?v=l9H28icAlUg

● Nginx, HAProxy or Traefik, ingress
controllers for transferring HTTP/HTTPS
requests to services

● CNI plugin (powered by Weave) for overlay
network support

● CoreDNS for internal names resolution
● Dynamic provisioner of persistent volumes
● Metrics Server for gathering stats
● Jelastic SSL for protecting ingress network
● Kubernetes Dashboard
● HELM package manager to auto-install

pre-packed solutions from repositories
● Jaeger, Prometheus and Grafana

Pre-Installed Kubernetes Components

Automatic Vertical Scaling with Pay-Per-Actual-Use Pricing

An example of Workers vertical scaling: available capacity 48 GiB vs actually used and billed 2 GiB

Changing Worker Node Resource Limits on the Fly

Access to Worker and Master Nodes Via Web SSH

Upgrade Procedure

Upgrade Procedure
● Check if the cluster is eligible to

upgrade, and availability of final
version(s)

● Upgrade installed cluster
components (Weave, ingresses,
dashboards, hello-world,
metrics-server, Helm,
Prometheus+Grafana, etc.)

● Check if deprecated components are
present in the cluster

● Upgrade master instances
one-by-one via redeploy

● Evict PODs, upgrade worker
instances one-by-one via redeploy

Built-In Add-Ons

Embedded Cluster Monitoring

Grafana Prometheus

Kubernetes Issues Solved by Jelastic

● Challenging setup is converted to “one click”
● Manual nodes configuration is fully automated
● Out of the box LB and SSL support
● K8s metrics and monitoring solutions

pre installed
● Replacing VMs with system containers

○ “Pay-Per-Actual-Use” pricing
○ Fast scaling of K8s nodes

● Turnkey solution for Public Hosting
Business

● Multi-cluster and multi-cloud
management

● Built-in billing and monitoring tools
● Product and security updates automation

https://www.youtube.com/watch?v=50AYZbP3lns

● Built-in CI/CD for creating a pipeline and

controlling the application delivery

lifecycle, from uploading the code to the

repository, up to deployment to

production

● AutoDevOps helps to establish a CI/CD

pipeline that automatically detects,

builds, tests, and deploys the projects

https://jelastic.com/blog/kubernetes-gitlab-ci-cd-integration/

GitLab CI/CD Pipeline Integrated with Kubernetes

https://jelastic.com/blog/kubernetes-gitlab-ci-cd-integration/

Kubernetes Federation is a multi-cloud or multi-region implementation for centralized
deployment and management of applications and services across multiple Kubernetes
clusters.
Multi-Region Kubernetes Cluster Federation in Jelastic PaaS

How to Federate Resources across Kubernetes Clusters for
Unified Deployment

Multi-Region Kubernetes Cluster Federation

https://jelastic.com/blog/kubernetes-cluster-federation/
https://jelastic.com/blog/kubernetes-cluster-federation-unified-deployment/
https://jelastic.com/blog/kubernetes-cluster-federation-unified-deployment/

https://www.beebyte.se/platform-as-a-service-paas/

GET STARTED WITH 30 DAYS FOR FREE

https://www.beebyte.se/platform-as-a-service-paas/

Give a Try Yourself
https://jelastic.com/kubernetes-hosting/

Contact for Partnership
and Assistance
info@jelastic.com

https://jelastic.com/kubernetes-hosting/

